Esta buscando: GRANT INSTRUMENTS


2  results were found

Sort Results

SearchResultCount:"2"
Descripción: Hemin derived from porcine is an iron-containing prosthetic group present in some proteins and can be an alternative source of iron within the host that contains a porphyrin ring containing a Fe2+ ion.
Hemin is a protoporphyrin IX containing a ferric iron (Fe3+) ion with a coordinating chloride ligand
Numero del catalogo: ACRO345960010
UOM: 1 * 1 g
Proveedor: Thermo Fisher Scientific

FDS


Descripción: The alcohol dehydrogenase family of proteins metabolize a wide variety of substrates, including retinol, hydroxysteroids, ethanol, aliphatic alcohols and lipid peroxidation products. ADH5 (alcohol dehydrogenase 5 (class III)), also known as FDH (formaldehyde dehydrogenase), ADHX, ADH-3 or GSNOR, is a 374 amino acid cytoplasmic protein that belongs to the class III subfamily of alcohol dehydrogenases. Expressed ubiquitously, ADH5 uses iron as a cofactor to catalytically oxidize both long-chain primary alcohols and S-hydroxymethyl-glutathione, a product formed spontaneously between formaldehyde and glutathione. ADH5 exists as a homodimer and, via its ability to oxidize S-hydroxymethyl-glutathione and, thus, eliminate formaldehyde, functions as an important component of cellular metabolism. Genetic variations in the gene encoding ADH5 may affect drug and alcohol dependence in humans.
Numero del catalogo: BOSSBS-12448R-FITC
UOM: 1 * 100 µl
Proveedor: Bioss


Descripción: The alcohol dehydrogenase family of proteins metabolize a wide variety of substrates, including retinol, hydroxysteroids, ethanol, aliphatic alcohols and lipid peroxidation products. ADH5 (alcohol dehydrogenase 5 (class III)), also known as FDH (formaldehyde dehydrogenase), ADHX, ADH-3 or GSNOR, is a 374 amino acid cytoplasmic protein that belongs to the class III subfamily of alcohol dehydrogenases. Expressed ubiquitously, ADH5 uses iron as a cofactor to catalytically oxidize both long-chain primary alcohols and S-hydroxymethyl-glutathione, a product formed spontaneously between formaldehyde and glutathione. ADH5 exists as a homodimer and, via its ability to oxidize S-hydroxymethyl-glutathione and, thus, eliminate formaldehyde, functions as an important component of cellular metabolism. Genetic variations in the gene encoding ADH5 may affect drug and alcohol dependence in humans.
Numero del catalogo: BOSSBS-12448R-A555
UOM: 1 * 100 µl
Proveedor: Bioss


Descripción: Stimulates synthesis of globulin.
Numero del catalogo: A11165.03
UOM: 1 * 1 g
Proveedor: Thermo Fisher Scientific

FDS Certificados


Descripción: The alcohol dehydrogenase family of proteins metabolize a wide variety of substrates, including retinol, hydroxysteroids, ethanol, aliphatic alcohols and lipid peroxidation products. ADH5 (alcohol dehydrogenase 5 (class III)), also known as FDH (formaldehyde dehydrogenase), ADHX, ADH-3 or GSNOR, is a 374 amino acid cytoplasmic protein that belongs to the class III subfamily of alcohol dehydrogenases. Expressed ubiquitously, ADH5 uses iron as a cofactor to catalytically oxidize both long-chain primary alcohols and S-hydroxymethyl-glutathione, a product formed spontaneously between formaldehyde and glutathione. ADH5 exists as a homodimer and, via its ability to oxidize S-hydroxymethyl-glutathione and, thus, eliminate formaldehyde, functions as an important component of cellular metabolism. Genetic variations in the gene encoding ADH5 may affect drug and alcohol dependence in humans.
Numero del catalogo: BOSSBS-12448R-CY5
UOM: 1 * 100 µl
Proveedor: Bioss


Descripción: Hemin chloride (from porcine) ≥95.0% (by titrimetric analysis)
Numero del catalogo: TCIAH0008-25G
UOM: 1 * 25 g
Proveedor: TCI


Descripción: The alcohol dehydrogenase family of proteins metabolize a wide variety of substrates, including retinol, hydroxysteroids, ethanol, aliphatic alcohols and lipid peroxidation products. ADH5 (alcohol dehydrogenase 5 (class III)), also known as FDH (formaldehyde dehydrogenase), ADHX, ADH-3 or GSNOR, is a 374 amino acid cytoplasmic protein that belongs to the class III subfamily of alcohol dehydrogenases. Expressed ubiquitously, ADH5 uses iron as a cofactor to catalytically oxidize both long-chain primary alcohols and S-hydroxymethyl-glutathione, a product formed spontaneously between formaldehyde and glutathione. ADH5 exists as a homodimer and, via its ability to oxidize S-hydroxymethyl-glutathione and, thus, eliminate formaldehyde, functions as an important component of cellular metabolism. Genetic variations in the gene encoding ADH5 may affect drug and alcohol dependence in humans.
Numero del catalogo: BOSSBS-12448R-CY7
UOM: 1 * 100 µl
Proveedor: Bioss


Descripción: The alcohol dehydrogenase family of proteins metabolize a wide variety of substrates, including retinol, hydroxysteroids, ethanol, aliphatic alcohols and lipid peroxidation products. ADH5 (alcohol dehydrogenase 5 (class III)), also known as FDH (formaldehyde dehydrogenase), ADHX, ADH-3 or GSNOR, is a 374 amino acid cytoplasmic protein that belongs to the class III subfamily of alcohol dehydrogenases. Expressed ubiquitously, ADH5 uses iron as a cofactor to catalytically oxidize both long-chain primary alcohols and S-hydroxymethyl-glutathione, a product formed spontaneously between formaldehyde and glutathione. ADH5 exists as a homodimer and, via its ability to oxidize S-hydroxymethyl-glutathione and, thus, eliminate formaldehyde, functions as an important component of cellular metabolism. Genetic variations in the gene encoding ADH5 may affect drug and alcohol dependence in humans.
Numero del catalogo: BOSSBS-12448R-CY3
UOM: 1 * 100 µl
Proveedor: Bioss


Descripción: The alcohol dehydrogenase family of proteins metabolize a wide variety of substrates, including retinol, hydroxysteroids, ethanol, aliphatic alcohols and lipid peroxidation products. ADH5 (alcohol dehydrogenase 5 (class III)), also known as FDH (formaldehyde dehydrogenase), ADHX, ADH-3 or GSNOR, is a 374 amino acid cytoplasmic protein that belongs to the class III subfamily of alcohol dehydrogenases. Expressed ubiquitously, ADH5 uses iron as a cofactor to catalytically oxidize both long-chain primary alcohols and S-hydroxymethyl-glutathione, a product formed spontaneously between formaldehyde and glutathione. ADH5 exists as a homodimer and, via its ability to oxidize S-hydroxymethyl-glutathione and, thus, eliminate formaldehyde, functions as an important component of cellular metabolism. Genetic variations in the gene encoding ADH5 may affect drug and alcohol dependence in humans.
Numero del catalogo: BOSSBS-12448R-A680
UOM: 1 * 100 µl
Proveedor: Bioss


Descripción: The alcohol dehydrogenase family of proteins metabolize a wide variety of substrates, including retinol, hydroxysteroids, ethanol, aliphatic alcohols and lipid peroxidation products. ADH5 (alcohol dehydrogenase 5 (class III)), also known as FDH (formaldehyde dehydrogenase), ADHX, ADH-3 or GSNOR, is a 374 amino acid cytoplasmic protein that belongs to the class III subfamily of alcohol dehydrogenases. Expressed ubiquitously, ADH5 uses iron as a cofactor to catalytically oxidize both long-chain primary alcohols and S-hydroxymethyl-glutathione, a product formed spontaneously between formaldehyde and glutathione. ADH5 exists as a homodimer and, via its ability to oxidize S-hydroxymethyl-glutathione and, thus, eliminate formaldehyde, functions as an important component of cellular metabolism. Genetic variations in the gene encoding ADH5 may affect drug and alcohol dependence in humans.
Numero del catalogo: BOSSBS-12448R-HRP
UOM: 1 * 100 µl
Proveedor: Bioss


Descripción: The alcohol dehydrogenase family of proteins metabolize a wide variety of substrates, including retinol, hydroxysteroids, ethanol, aliphatic alcohols and lipid peroxidation products. ADH5 (alcohol dehydrogenase 5 (class III)), also known as FDH (formaldehyde dehydrogenase), ADHX, ADH-3 or GSNOR, is a 374 amino acid cytoplasmic protein that belongs to the class III subfamily of alcohol dehydrogenases. Expressed ubiquitously, ADH5 uses iron as a cofactor to catalytically oxidize both long-chain primary alcohols and S-hydroxymethyl-glutathione, a product formed spontaneously between formaldehyde and glutathione. ADH5 exists as a homodimer and, via its ability to oxidize S-hydroxymethyl-glutathione and, thus, eliminate formaldehyde, functions as an important component of cellular metabolism. Genetic variations in the gene encoding ADH5 may affect drug and alcohol dependence in humans.
Numero del catalogo: BOSSBS-12448R-A488
UOM: 1 * 100 µl
Proveedor: Bioss


Descripción: The alcohol dehydrogenase family of proteins metabolize a wide variety of substrates, including retinol, hydroxysteroids, ethanol, aliphatic alcohols and lipid peroxidation products. ADH5 (alcohol dehydrogenase 5 (class III)), also known as FDH (formaldehyde dehydrogenase), ADHX, ADH-3 or GSNOR, is a 374 amino acid cytoplasmic protein that belongs to the class III subfamily of alcohol dehydrogenases. Expressed ubiquitously, ADH5 uses iron as a cofactor to catalytically oxidize both long-chain primary alcohols and S-hydroxymethyl-glutathione, a product formed spontaneously between formaldehyde and glutathione. ADH5 exists as a homodimer and, via its ability to oxidize S-hydroxymethyl-glutathione and, thus, eliminate formaldehyde, functions as an important component of cellular metabolism. Genetic variations in the gene encoding ADH5 may affect drug and alcohol dependence in humans.
Numero del catalogo: BOSSBS-12448R-A750
UOM: 1 * 100 µl
Proveedor: Bioss


Descripción: The alcohol dehydrogenase family of proteins metabolize a wide variety of substrates, including retinol, hydroxysteroids, ethanol, aliphatic alcohols and lipid peroxidation products. ADH5 (alcohol dehydrogenase 5 (class III)), also known as FDH (formaldehyde dehydrogenase), ADHX, ADH-3 or GSNOR, is a 374 amino acid cytoplasmic protein that belongs to the class III subfamily of alcohol dehydrogenases. Expressed ubiquitously, ADH5 uses iron as a cofactor to catalytically oxidize both long-chain primary alcohols and S-hydroxymethyl-glutathione, a product formed spontaneously between formaldehyde and glutathione. ADH5 exists as a homodimer and, via its ability to oxidize S-hydroxymethyl-glutathione and, thus, eliminate formaldehyde, functions as an important component of cellular metabolism. Genetic variations in the gene encoding ADH5 may affect drug and alcohol dependence in humans.
Numero del catalogo: BOSSBS-12448R-A350
UOM: 1 * 100 µl
Proveedor: Bioss


Descripción: The alcohol dehydrogenase family of proteins metabolize a wide variety of substrates, including retinol, hydroxysteroids, ethanol, aliphatic alcohols and lipid peroxidation products. ADH5 (alcohol dehydrogenase 5 (class III)), also known as FDH (formaldehyde dehydrogenase), ADHX, ADH-3 or GSNOR, is a 374 amino acid cytoplasmic protein that belongs to the class III subfamily of alcohol dehydrogenases. Expressed ubiquitously, ADH5 uses iron as a cofactor to catalytically oxidize both long-chain primary alcohols and S-hydroxymethyl-glutathione, a product formed spontaneously between formaldehyde and glutathione. ADH5 exists as a homodimer and, via its ability to oxidize S-hydroxymethyl-glutathione and, thus, eliminate formaldehyde, functions as an important component of cellular metabolism. Genetic variations in the gene encoding ADH5 may affect drug and alcohol dependence in humans.
Numero del catalogo: BOSSBS-12448R-A647
UOM: 1 * 100 µl
Proveedor: Bioss


Descripción: Other name: Ferric ammonium sulphate solution R2
Numero del catalogo: 87830.290
UOM: 1 * 1 L
Proveedor: VWR Chemicals

FDS Certificados


Descripción: CAS No.: 142906-29-4
Numero del catalogo: ACRO345235000
UOM: 1 * 500 g
Proveedor: Thermo Fisher Scientific

FDS